Элементы квантовой механики и физики атомов, молекул, твердых тел

Дизайн интерьера
Сопромат
Расчетные нагрузки
Расчеты на прочность
Усталостная прочность
Основы расчета и проектирования
деталей и узлов машин
Курс «Детали машин»
Надежность машин
Соединения деталей машин
Расчет на прочность клепаных соединений
Сварные, паяные и клееные соединения
Расчет на прочность сварных соединений
Соединения с натягом
Резьбовые соединения
Расчет шпоночных соединений
Механические передачи
Основные понятия о зубчатых передачах
Основы расчета на прочность
зубчатых передач
Расчет на контактную прочность
Расчет на изгиб
Редукторы
Основные понятия о ременных передачах
Проверочный расчет валов
Подшипники скольжения
Подшипники качения
Виды разрушения подшипников качения
Начертательная геометрия
Основы образования чертежа
Позиционные и метрические задачи
Поверхности вращения
Аксонометрические проекции
Наглядные изображения
Изображения на технических чертежах.
Соединение части вида и части разреза
Выполнить необходимые разрезы
Прямоугольная диметрия
Построить чертеж кондуктора
Построить проекции конуса вращения
Выполнение чертежей деталей,
имеющих сопряжения
Построить три проекции призмы
Построить проекции конуса вращения
Математика
Числовые ряды
Функции комплексной переменной
Операционное исчисление
Предел функции
Задачи курсового и типового расчета
Формула Тейлора
Интегрирование функций
нескольких переменных
Вычисление интеграла
Длина дуги в декартовых координатах
Физика
Лабораторные работы по электронике
Лабораторные работы
Расчет трехфазных цепей
Лабораторные работы по электротехнике
Оптика физика
Квантовая механика
Ядерный реактор
Информатика
Компьютерные сети
Кабели и интерфейсы
Обмен данных в сети
Сетевое оборудование и топологии
Теоретические основы Интернета
Служба World Wide Web (WWW)
Служба передачи файлов FTP
Понятие броузеров и их функции
Отправка и получение сообщений
Сервер
Сетевые топологии
Доступ к среде передачи
Беспроводные сети
Архитектура Ethernet
Выбор устройств связи и стека протоколов
Шлюзы
IP-адреса для локальных сетей
Основы безопасности при работе в сетях
Доменная система имен (DNS)
Протокол PPP Point-to-Point Protocol
Структура МАС-адреса
Нагрузочная способность сети
Протоколы маршрутизации
Маршрутизация для мобильных объектов
Формат DNS-сообщений

Атом Резерфорда – Бора и гипотеза де Бройля Ядерная модель атома Резерфорда

Теория атома водорода по Бору Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Элементы квантовой механики Соотношение неопределенностей Современная трактовка корпускулярно-волнового дуализма может быть выражена словами: для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица.

Частица в потенциальном ящике. Квантование энергии Рассмотрение частицы в потенциальном ящике — одномерной прямоугольной потенциальной яме с бесконечно высокими стенками — имеет большое значение, так как потенциальная яма есть первое приближение силового поля, связывающего электроны в атоме, а также атомы в кристаллической решетке.

Прохождение частиц через потенциальный барьер. Туннельный эффект Потенциальным барьером называют область пространств, в которой потенциальная энергия больше, чем в окружающих областях пространства.

Квантование момента импульса Момент импульса. Момент импульса М является одной из важнейших характеристик движения. Однако в квантовой теории момент импульса существенно отличается от классического. А именно, модуль момента импульса может быть задан сколь угодно точно только с одной из проекций, например, Мг. Другие две проекции оказываются полностью неопределенными.

Элементы квантовой статистики и зонной теории твердого тела Понятие о квантовой статистике Свойства систем, состоящих из огромного числа частиц, подчиняющихся законам квантовой механики, изучаются в разделе статистической физики – квантовой статистике. Квантовая статистика основывается на принципе неразличимости тождественных частиц.

Распределение Бозе - Эйнштейна Перейдем к выводу закона распределения для идеального бозе-газа, т. е. системы практически не взаимодействующих бозонов. Вначале решим вспомогательную задачу. Возьмем N неразличимых частиц, помещенных в некоторый длинный ящик (пенал).

Фононный газ Колебания кристаллической решетки можно представить как фононный газ, заключенный в пределах образца кристалла, подобно тому, как электромагнитное излучение можно представить как фотонный газ, заполняющий полость. Чтобы обсудить эту тему подробнее, нужно знать решение задачи о малых колебаниях системы с большим числом степеней свободы. Ниже будут рассмотрены результаты решения этой задачи, не касаясь способов ее решения.

Понятие о квантовой теории теплоемкости кристаллов Для фотонного газа предполагались условия изотропности среды и линейности закона дисперсии (ω = сk). Для кристаллов в общем случае эти условия не выполняются. Из-за электрон-электронного, электрон-фононного и фонон-фононного взаимодействия закон дисперсии для кристаллов имеет сложный вид и зависит от направления в кристалле

Теплоемкость фононного газа Применив к фононному газу распределение Бозе-Эйнштейна, можно получить выражение для энергии колеба­ний кристаллической решетки, а следовательно, и для теплоемкости кристаллов. Число фононов непостоянно (они могут возникать и исчезать).

Температура вырождения Уровень Ферми, хотя и очень слабо, но зависит от температуры

Электроны в кристаллах Электропроводность металлов Квантовомеханический расчет показывает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Согласно корпускулярно-волновому дуализму, движению электрона сопоставляют волновой процесс

Примесная проводимость полупроводников Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники — примесными полупроводниками. Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефектами типа избыточных атомов (по сравнению со стехиометрическим составом), тепловыми (пустые узлы или атомы в междоузлиях) и механическими (трещины, дислокации и т.д.) дефектами. Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат. % бора его проводимость увеличивается примерно в 106 раз.

Контакт электронного и дырочного полупроводников Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или р-n-переходом). Эти переходы имеют большое практическое значение, являясь основой работы многих полупроводниковых приборов. р-n-Переход нельзя осуществить просто механическим соединением двух полупроводников. Обычно области различной проводимости создают либо при выращивании кристаллов, либо при соответствующей обработке кристаллов.

Контактные и термоэлектрические явления по зонной теории Работа выхода и термоэлектронная эмиссия Поверхность металла удается покинуть только тем электронам проводимости, энергия которых оказывается достаточной для преодоления потенциального барьера, имеющегося на поверхности. Удаление электрона от наружного слоя ионов peшетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда.

Сверхпроводимость Камерлинг-Оннес обнаружил в 1911 г., что при температуре около 4 К электрическое сопротивление ртути скачком уменьшалось до нуля. Дальнейшие исследования показали, что аналогично ведут себя и многие другие металлы и сплавы. Это явление назвали сверхпроводимостью, а вещества, где оно наблюдается, - сверхпроводниками. Температура Тк, при которой происходит скачкообразное уменьшение сопротивления, называется температурой перехода в сверхпроводящее состояние или критической температурой. Состояние сверхпроводника выше критической температуры называется нормальным, а ниже — сверхпроводящим.

Атом водорода. Квантование Собственные значения энергии. Рассмотрим систему, состоящую из электрона е, который движется в кулоновском поле неподвижного ядра с зарядом Ze (водородоподобная система).

Описание состояния электрона. Поскольку в квантовой механике определяют лишь вероятность местонахождения электрона, то для наглядности применяют образ электронного облака. Плотность электронного облака в каждой точке пространства вокруг ядра пропорциональна плотности вероятности обнаружения электрона в этой точке, которая в свою очередь определяется квадратом модуля волновой функции. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число m – ориентацию электронного облака в пространстве.

Щелочные металлы. Уровни энергии Атом щелочного металла имеет Z электронов и можно считать, что (Z – 1) электронов вместе с ядром образуют сравнительно прочный остов, в электрическом поле которого движется внешний (валентный) электрон, довольно слабо связанный с остовом атома.

Результирующий механический момент многоэлектронного атома

О периодической системе элементов Д.И. Менделеева. В основе систематики заполнения электронных состояний в атомах лежит принцип Паули. Это позволяет объяснить Периодическую систему элементов Д.И. Менделеева (1869) — фундаментальный закон природы — основу современной химии, атомной и ядерной физики.

Магнитный момент атома. Опыт Штерна и Герлаха

Физика атомного ядра и элементарных частиц Атомное ядро Состав и основные характеристики атомного ядра

Ядерные силы Силы, удерживающие нуклоны в ядре, называются ядерными. Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы притяжения между нуклонами в сотни раз превосходят электромагнитные силы отталкивания. Перечислим отличительные особенности этих сил.

Радиоактивность Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. Такие превращения претерпевают только нестабильные ядра. К числу радиоактивных процессов относятся: 1) α-распад, 2) β-распад (в том числе электронный захват), 3) γ-излучение ядер, 4) спонтанное деление тяжелых ядер, 5) протонная радиоактивность.

Эффект Мёссбауэра

Деление ядер Реакция деления ядра происходит при облучении тяжелого ядра нейтронами, при этом ядро делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Деление тяжелых ядер может быть вызвано не только нейтронами, но и протонами, дейтронами, α-частицами, а также γ-фотонами

Элементарные частицы Виды взаимодействий элементарных частиц В настоящее время элементарными частицами называют большую группу мельчайших частиц материи, которые не являются атомами или атомными ядрами (за исключением протона — ядра атома водорода) и которые при взаимодействии ведут себя как единое целое. Характерным свойством всех элементарных частиц является их способность к взаимным превращениям (рождению и уничтожению) при взаимодействии с другими частицами.

Частицы и античастицы Уравнение Шрёдингера не удовлетворяет требованиям теории относительности — оно не инвариантно по отношению к преобразованиям Лоренца. В 1928 г. П. Дираку удалось найти релятивистское квантовомеханическое уравнение для электрона, из которого вытекает ряд замечательных следствии.

Кварки Обилие открытых и вновь открываемых адронов навела Гелл-Мана и Цвейга (1964 г.) на мысль, что все они построены из каких-то других более фундаментальных частиц. Ими  была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых.

Рентгеновское излучение Природа и свойства РИ. В рентгеновской трубке пучок электронов, эмитируемых катодом и разгоняемых электрическим полем до скоростей порядка 100000 км/с, ударяется об анод. Очень резкое торможение электронов, происходящее при  ударе об анод, создаёт коротковолновое электромагнитное излучение, называемое  тормозным РИ. При ударе электронов об анод происходит превращение части кинетической энергии электронов в энергию электромагнитного излучения, однако большая часть энергии электронов превращается в энергию молекулярно-теплового движения частиц анода, что вызывает его сильное нагревание.

Радиоактивностью называется процесс самопроизвольного распада неустойчивых ядер с испусканием других ядер или элементарных частиц.

Cопромат, физика, электроника лабораторные работы. Математика решение задач