Квантование момента импульса Квантовая механика Примесная проводимость полупроводников Физика атомного ядра и элементарных частиц Ядерные силы Рентгеновское излучение

Понятие о квантовой теории теплоемкости кристаллов

Для фотонного газа предполагались условия изотропности среды и линейности закона дисперсии (ω = сk). Для кристаллов в общем случае эти условия не выполняются. Из-за электрон-электронного, электрон-фононного и фонон-фононного взаимодействия закон дисперсии для кристаллов имеет сложный вид и зависит от направления в кристалле. В настоящее время с помощью компьютеров эта задача достаточно успешно решается, но рассмотрение методов решения столь громоздких задач выходит за рамки данного курса. Ниже для иллюстрации будут рассмотрены лишь упрощенные законы дисперсии, справедливые только в пределе длинных волн в кристалле (в модели Эйнштейна для оптических колебаний, в модели Дебая для акустических колебаний). Несмотря на свою простоту, в более совершенной модели Дебая (по сравнению с моделью Эйнштейна) было получено качественное согласие с экспериментом. В модели не учитывался вклад электронов в теплоемкость. Согласно классической физике вклад электронов в теплоемкость должен быть столь же существенен, как и вклад ионов в кристалле. Ответ на возникший парадокс был дан в рамках квантовой теории электронного спектра в кристаллах. Эта теория будет обсуждаться после рассмотрения теплоемкости.

Модель Эйнштейна

Эйнштейн отождествил кристаллическую решетку из N атомов с системой 3N независимых гармонических осцилляторов с одинаковой собственной частотой ω. Существование нулевой энергии колебаний было установлено значительно позже, лишь после создания квантовой механики. Поэтому Эйнштейн исходил из планковского значения энергии гармонического осциллятора εп = пћω. Соответственно в использованном Эйнштейном выражении для среднего значения энергии слагаемое ћω/2 отсутствовало.

Приняв, что распределение осцилляторов по состояниям с различной энергией

подчиняется закону Больцмана, можно найти среднее значение энергии гармонического осциллятора <ε>. Получается выражение, отличающееся от формулы Планка для средней энергии излучения лишь тем, что оно имеет дополнительное слагаемое ћω/2. Таким образом,

(14.27)

Умножив второе слагаемое выражения (14.27) на 3N, Эйнштейн получил для внутренней энергии кристалла формулу

(14.28)

Продифференцировав выражение (14.28) по температуре, Эйнштейн нашел теплоемкость кристалла:

(14.29)

Рассмотрим два предельных случая.

1. Высокие температуры (kТ >> ћω). В этом случае можно положить ехр(ћω /kТ) ≈ 1 + ћω /kТ в знаменателе и ехр(ћω /kТ) ≈ 1 — в числителе формулы (14.29). В результате для теплоемкости получается значение C = 3Nk.

Таким образом, мы пришли к закону Дюлонга и Пти.

2. Низкие температуры (kТ << ћω). При этом условии единицей в знаменателе выражения (14/29) можно пренебречь. Тогда формула для теплоемкости принимает вид

(14.30)

Экспоненциальный множитель изменяется значительно быстрее, чем Т 2. Поэтому при приближении к абсолютному нулю выражение (14.30) будет стремиться к нулю практически по экспоненциальному закону.

Опыт показывает, что теплоемкость кристаллов изменяется вблизи абсолютного нуля не экспоненциально, а по закону Т 3. Следовательно, теория Эйнштейна дает лишь качественно правильный ход теплоемкости при низких температурах. Количественного согласия с опытом удалось достигнуть Дебаю.

Модель Дебая

В этой модели, как и в модели Эйнштейна, рассматривается изотропная среда, но учитывается дисперсия упругих волн.

Число стоячих волн, т. е. нормальных колебаний, частоты которых заключены в интервале от ω до ω + d ω, приходящихся на единицу объема V кристалла равно (см. (14.20))

(14.30)

где υ — фазовая скорость волны в кристалле. При выводе этой формулы предполагалось, что ω = υk, т.е. упругие волны имеют линейный закон дисперсии.

Формула (14.30) не учитывает возможных видов поляризации волны. В твердой среде вдоль некоторого направления могут распространяться три разные волны с одним и тем же значением ω, различающиеся направлением поляризации: одна продольная и две поперечные с взаимно перпендикулярными направлениями колебаний. В соответствии с этим формулу (14.30) нужно видоизменить следующим образом:

Здесь υ||— фазовая скорость продольных, a υ^ — поперечных упругих волн. Положим для простоты, что υ|| = υ^ = υ. Тогда

(14.31)

Максимальную частоту ωт нормальных колебаний решетки можно найти, приравняв полное число колебаний числу степеней свободы, равному 3n (n — число атомов в единице объема кристалла; расчет производится для единицы объема):

Отсюда

(14.32)

В соответствии с(14.32) наименьшая длина волны, возбуждаемая в кристалле, оказывается равной

где d — расстояние между соседними атомами в решетке. Этот результат согласуется с тем, что волны, длина ко­торых меньше удвоенного межатомного расстояния, не имеют физического смысла.

Исключив из равенств (14.31) и (14.32) скорость υ, получим для числа нормальных колебаний dNω в интервале частот dω, приходящегося на единицу объема кристалла, следующее выражение

(14.33)

Внутренняя энергия единицы объема кристалла может быть представлена в виде

где <ε(ω)> — среднее значение энергии нормального колебания частоты ω. Подставив выражение (14.27) для <ε(ω)> и (14.33) для dNω придем к формуле

(14.34)

Здесь U0 = Зп((3/8)ћωm) — энергия нулевых колебаний кристалла.

Производная от U по Т дает теплоемкость единицы объема кристалла

Величину Θ, определяемую условием

ћωm = k Θ,

 на­зывают характеристической температурой Дебая. Температура Дебая указывает для каждого вещества ту область, где становится существенным квантование энергии колебаний.

Введем переменную х = ћω/kТ. Тогда выражение для теплоемкости примет вид

(14.35)

где хт = ћωm/ kТ = Θ/Т. При Т << Θ верхний предел интеграла будет очень большим, так что его можно приближенно положить равным бесконечности (хт ≈ ∞). Тогда интеграл будет представлять собой некоторое число, и теплоемкость С окажется пропорциональной кубу тем­пературы: С ~ T 3. Эта приближенная зависимость известна как закон Т 3 Дебая. При достаточно низких температурах этот закон выполняется во многих случаях очень хорошо.

При Т >> Θ, т. е. при ћωm/ kТ << 1, формулу (14/34) можно упростить, положив ехр(ћω/kТ) ≈ 1 + ћω/kТ. То­гда для внутренней энергии получается выражение

а для теплоемкости — значение С = 3пk, фигурирующее в законе Дюлонга и Пти.

О согласии теории Дебая с опытом можно судить по рис. 14.3, на котором приведены данные для теплоемкости алюминия (Θ = 396 К) и меди (Θ = 309 К); С∞ — классическое значение теплоемкости, получающееся из квантовых формул при Т → ∞. Кривые построены по формуле (14.35), кружками показаны экспериментальные точки.

Формула Дебая хорошо передает ход теплоемкости с температурой лишь для тел с простыми кристаллически­ми решетками, т. е. для химических элементов и некоторых

простых соединений.

Рис. 14.3.

К телам с более сложной структурой формула Дебая неприменима. Это объясняется тем, что у таких тел спектр колебаний оказывается чрезвычайно сложным. В рассмотренном нами выше случае простой кристаллической решетки (у которой в элементарной ячейке содержится только один атом) каждому значению волнового вектора k соответствовали три значения собственной частоты колебаний решетки (одно для продольной и два значения для поперечных волн). Если число атомов в элементарной ячейке кристалла равно r, каждому значению k соответствует в общем случае 3r различных значений ω; следовательно, частота является много многозначной функцией волнового вектора, обладающей 3r ветвями. Так, например, в случае одномерной цепочки, построенной из чередующихся атомов двух сортов (r = 2), зависимость ω от k имеет вид, показанный на рис. 14.4. Одна из ветвей называется акустической, другая — оптической. Эти ветви различаются дисперсией, т. е. характером зависимости ω от k. Акустическая ветвь при убывании k идет в нуль, оптическая ветвь имеет своим пределом конечное значение ω20.

Рис. 14.4.

В трехмерном случае из 3r ветвей три являются акустическими, остальные (3r - 3) — оптическими. Акустическим ветвям соответствуют звуковые частоты, оптическим — частоты, лежащие в инфракрасной области спектра. При нормальном колебании акустической частоты колеблются относительно друг друга аналогичные атомы, помещающиеся в различных элементарных ячейках. При нормальных колебаниях оптической частоты колеблются относительно друг друга различные атомы внутри каждой из элементарных ячеек; аналогичные атомы различных ячеек находятся при этом на неизменных расстояниях друг от друга.

При анализе этих экспериментов было установлено, что отклонения происходят вследствие кулоновского отталкивания от положительного заряда, сосредоточенного в очень малом объеме внутри атома. До этого уже было известно (по экспериментам с ионизацией газов), что в составе атомов вещества также имеются элементарные частицы – электроны (с малой массой и отрицательным зарядом). Для объяснения результатов рассеивания Резерфорд в 1911г. предложил планетарную модель атома. Согласно этой модели атом построен по типу Солнечной системы - в центре атома в очень малой области (10-14 м) находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома, а вокруг ядра под действием сил Кулоновского притяжения двигаются по замкнутым орбитам электроны (примерный радиус орбит -10-10м). При этом суммарный заряд электронов равен по величине заряду ядра, поэтому в целом атом нейтрален
Элементы квантовой механики и физики атомов, молекул, твердых тел