Формула Тейлора Интегрирование функций нескольких переменных Вычисление интеграла Длина дуги в декартовых координатах Числовые ряды Функции комплексной переменной

Математика примеры решения задач контрольной работы

Дифференцируемость ФНП

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Дифференциалы высших порядков ФНП Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка.

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Дифференцирование сложной ФНП Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

Производная сложной ФНП по независимому переменному равна сумме произведений производной внешней функции по каждому из промежуточных переменных, умноженной на производную этого промежуточного переменного по соответствующему независимому аргументу.

Диффенцирование неявно заданной функции

Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Различают несколько постановок задачи на нахождение экстремума ФНП Исследовать на локальный экстремум .

Абсолютный экстремум ФНП Допустимая точка  называется точкой абсолютного минимума (или максимума) ФНП ,  в задаче (*), если
выполняется условие:    или  .

Формула Тейлора для ФНП записывается в дифференциальной форме по аналогии с формулой Тейлора для функции одной переменной:

Здесь  – дифференциал -го порядка функции  в точке , его можно записать в операторной форме

,

где  – фиксированная точка; , , ,  – имеют
постоянные значения. Через   обозначен остаточный член

формулы Тейлора; существуют различные формы записи для , например,  – бесконечно малая при  функция более высокого порядка малости,
чем .

Для функции двух переменных при  формула Тейлора имеет вид

,

где ;

;

, , .

ПРИМЕР 1. Разложить функцию  
в окрестности точки   по формуле Тейлора при .

Решение. Поскольку

,

то вычисляем ;

,

где ; ; ;

.

Окончательно получаем

 ,

где .


Математика примеры решения задач