Пределы функции на бесконечности Первый замечательный предел Непрерывность функции в точке Основные правила дифференцирования Производные и дифференциалы высших порядков Предел функции

Курс высшей математики решение задач

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ Задачи, приводящие к понятию определенного интеграла. Определенный интеграл как предел интегральных сумм. Понятие об интегрируемой функции, формулировка теоремы существования. Свойства определенного интеграла. Теорема о среднем. Производная от определенного интеграла по верхнему пределу. Связь между определенным и неопределенным интегралом (формула Ньютона - Лейбница).

Производная и дифференциал функции двух переменных.

Исследование функции двух переменных.

Образец решения типового расчёта № 5.

Задание 1. Найти и изобразить на плоскости область определения функции двух переменных: .

Решение. Очевидно, аналитическое выражение, задающее данную функцию, имеет смысл тогда и только тогда, когда знаменатель дроби не равен нулю: . Уравнение  задаёт на координатной плоскости   параболу , вершина которой находится в точке , ветви направлены влево, а осью симметрии является ось абсцисс. Таким образом, областью определения данной функции являются все точки координатной плоскости, кроме тех, что лежат на параболе .

Задание 2. Найти частные производные первого порядка функций двух переменных:

2.1. .

Решение.  .

 2.2. .

Решение. .

 2.3. .

Решение. .

Задание 3. Найти все частные производные второго порядка функции двух переменных: .

Решение. Сначала найдём частные производные первого порядка:

.

Теперь находим производные второго порядка по переменным  и :

.

Находим смешанные производные:

.

Задание 4. Найти производную функции  в точке  по направлению вектора .

Решение. Производная функции  по направлению вектора равна:

, где  направляющие косинусы вектора .

Находим частные производные данной функции:

.

Находим значения частных производных в точке :

.

Находим направляющие косинусы вектора :

.

Окончательно получим:

.

Типовой расчёт № 2 Дифференцирование функции одной переменной. Исследование функций с помощью производной

Образец выполнения типового расчёта № 3. Задание 1. Составить формулу общего члена числового ряда: .

Интегрирование. Образец решения типового расчёта № 4. Задание 1. Найти неопределённые интегралы: .

Задачи приводящие к понятию определенного интеграла. Понятие определенного интеграла, вычисление интеграла по определению. Необходимый признак интегрируемости

Метод интегрирования по частям

Если функции дифференцируемы, то справедлива следующая формула:

.  (7.1)

Эта формула используется в тех случаях, когда выражение   можно представить в виде   так, что стоящий в правой части формулы (7.1) интеграл оказывается проще исходного.

Формула (7.1) может применяться неоднократно.

Пример 16.

=

=  

 


Решение типовых задач по математике