Сопромат Расчетные нагрузки Расчеты на прочность Усталостная прочность Основы расчета и проектирования деталей и узлов машин Начертательная геометрия

Сопротивление материалов Расчетные нагрузки

На основе дифференциальной связи Q и М, получим:

для первого участка:

Q > 0 и М возрастает от нуля до .

Q = const и M x

для второго участка:

Q < 0 и М убывает с до нуля.

Q = const и M также пропорционален х, т.е. изменяется по линейному закону.

Опасным в данном примере является сечение балки в центре пролета:

.

Третий характерный пример связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций: , а для искомого сечения (рис.4 б) выражения для внутренних усилий приобретают вид:

а) расчетная схема, б) отсеченная часть, в) эпюра поперечных сил, г) эпюра внутренних изгибающих моментов

Рис.4 Двухопорная балка с равномерно распределенной нагрузкой:


Расчет на прочность и жесткость при растяжении - сжатии