Сопромат Расчетные нагрузки Расчеты на прочность Усталостная прочность Основы расчета и проектирования деталей и узлов машин Начертательная геометрия

Сопротивление материалов Расчетные нагрузки

Одной из распространенных моделей поведения материала при упруго-пластических деформациях является модель пластичности, основанная на деформационной теории Генки—Ильюшина, описываемая уравнениями:

Здесь — средняя деформация,

— среднее напряжение,

— безразмерный коэффициент, называемый параметром пластичности (с точностью до множителя он совпадает с интенсивностью касательных напряжений). При эта модель описывает поведение упругого материала.

Высокоэластическое состояние — наиболее характерно для полимеров; особенностями этого состояния являются большая изменяемость формы и деформирование без изменения объема. Для материалов, находящихся в высокоэластическом состоянии, наблюдается существенная зависимость их свойств от длительности и скорости нагружения, температуры и т. д.

Состояние разрушения — состояние, при котором за счет интенсивного развития трещин в материале тела начинается нарушение его сплошности и непрерывности. Физический процесс разрушения материала представляется в виде двух основных стадий — стадии рассеянных разрушений (зарождение и развитие микроскопических трещин) и стадии развития магистральной трещины. Очаги зарождения микротрещин распределены по всему объему материала, находящегося в однородном напряженном состоянии, достаточно равномерно. Относительная длительность первой и второй стадии разрушения зависит от свойств материала, характера напряженного состояния и условий нагружения.

Диаграммы упрого-пластического деформирования конструкционных материалов

Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние. Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643—81, ГОСТ 1497-73. По результатам испытаний строится зависимость между напряжениями и деформациями , которая называется диаграммой деформирования. Опыты на растяжение образцов выявляют некоторые общие свойства конструкционных материалов—свойства упругости и пластичности. На рис. 1 показаны типичные кривые деформирования при растяжении образцов из материала сталь 30 и сталь 40Х.

Если напряжения не превышают — предела пропорциональности (точка / на диаграмме), и зависимость между напряжениями и деформациями линейна, то она описывается законом Гука , где Е—модуль продольной упругости материала. Размерность модуля упругости—Н/м2 (Паскаль). Значение модуля упругости Е на кривой деформирования численно равно тангенсу угла наклона линейного участка: . Таким образом, величину Е можно рассматривать как характеристику упругого сопротивления или как характеристику интенсивности- нарастания напряжения с увеличением деформации. Физический смысл коэффициента Е определяется как напряжение, необходимое для увеличения длины образца в два раза. Такое толкование довольно искусственно, поскольку величина упругого удлинения у большинства твердых тел редко достигает даже 1%.



Рис.1. Характерные диаграммы растяжения


Расчет на прочность и жесткость при растяжении - сжатии