Числовые ряды Функции комплексной переменной Операционное исчисление Предел функции Задачи курсового и типового расчета

Математика задачи контрольной работы

Ряды и интеграл Фурье

Основные сведения

Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение  и частное периодических функций периода Т есть периодическая функция периода Т.

2)  Если функция f(x) период Т , то функция f(ax) имеет период .

3)  Если f(x) - периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f(x) разлагается на отрезке  в равномерно сходящийся тригонометрический ряд:

  (1)

,то это разложение единственное и коэффициенты определяются по формулам:

  , где n=1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а  коэффициентами ряда Фурье.

Достаточные признаки разложимости функции в ряд Фурье

Точка   разрыва функции  называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке.

ТЕОРЕМА 1 (Дирихле). Если  периодическая с периодом  функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной).

ТЕОРЕМА 2. Если f(x) периодическая функция с периодом  , которая на отрезке [] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой).

Пример:

Критерий Коши:

Определение равномерной сходимости функционального ряда на множестве E:

Критерий Коши:

.

Следствие. Если


Математика задачи курсового и типового расчета