Компьютерные сети Кабели и интерфейсы Обмен данных в сети Сетевое оборудование и топологии Служба передачи файлов FTP Беспроводные сети Архитектура Ethernet IP-адреса для локальных сетей Нагрузочная способность сети

Сетевые топологии и способы доступа к среде передачи данных

При организации компьютерной сети исключительно важным является выбор топологии, т.е. компоновки сетевых устройств и кабельной инфраструктуры. Нужно выбрать такую топологию, которая обеспечила бы надежную и эффективную работу сети, удобное управление потоками сетевых данных. Желательно также, чтобы сеть по стоимости создания и сопровождения получилась недорогой, но в то же время оставались возможности для ее дальнейшего расширения и, желательно, для перехода к более высокоскоростным технологиям связи.

Чтобы решить эту задачу, необходимо знать, какие вообще бывают сетевые топологии. При этом следует различать понятия физической топологии, т. е. способа размещения ПК, сетевого оборудования и их соединения с помощью кабельной инфраструктуры, и логической топологии — структуры взаимодействия ПК и характера распространения сигналов по сети.

Базовые сетевые топологии

Существует три базовые топологии, на основе которых строится большинство сетей.

«Шина» (Bus). В этой топологии все компьютеры соединяются друг с другом одним кабелем (рис. 3.1). Посланные в такую сеть данные передаются всем компьютерам, но обрабатывает их только тот компьютер, аппаратный МАС-адрес сетевого адаптера которого записан в как адрес получателя. Рис 3.1. Сеть с топологией «шина»

Эта топология исключительно проста в реализации и дешева (требует меньше всего кабеля), однако имеет ряд существенных недостатков.

Недостатки сетей типа «шина»

● Такие сети трудно расширять (увеличивать число компьютеров в сети и количество сегментов — отдельных отрезков кабеля, их соединяющих).

● Поскольку шина используется совместно, в каждый момент времени передачу может вести только один из компьютеров. Если передачу одновременно начинают два или больше компьютеров, возникает искажение сигнала (столкновение, или коллизия), приводящее к повреждению всех кадров. Тогда компьютеры вынуждены приостанавливать передачу, а затем по очереди ретранслировать данные. Влияние столкновений тем заметнее, чем выше объем передаваемой по сети информации и чем больше компьютеров подключено к шине. Оба этих фактора, естественно, снижают как максимально возможную, так и общую производительность сети, замедляя ее работу.

● «Шина» является пассивной топологией — компьютеры только «слушают» кабель и не могут восстанавливать затухающие при передаче по сети сигналы. Чтобы удлинить сеть, нужно использовать повторители (репитеры), усиливающие сигнал перед его передачей в следующий сегмент.

● Надежность сети с топологией «шина» невысока. Когда электрический сигнал достигает конца кабеля, он (если не приняты специальные меры) отражается, нарушая работу всего сегмента сети. Чтобы предотвратить такое отражение сигналов, на концах кабеля устанавливаются специальные резисторы (терминаторы), поглощающие сигналы. Если же в любом месте кабеля возникает обрыв — например, при нарушении целостности кабеля или просто при отсоединении коннектора, — то возникают два незатерминированных сегмента, на концах которых сигналы начинают отражаться, и вся сеть перестает работать.

Проблемы, характерные для топологии «шина», привели к тому, что эти сети, столь популярные еще десять лет назад, сейчас уже практически не используются.

«Кольцо» (Ring). В данной топологии каждый из компьютеров соединяется с двумя другими так, чтобы от одного он получал информацию, а второму — передавал ее (рис. 3.2). Последний компьютер подключается к первому, и кольцо замыкается.

Рис. 3.2. Сеть с топологией «кольцо»

Здесь, так же как и для сетей «шина», недостатки несколько перевешивают достоинства, и результате популярные ранее кольцевые сети теперь используются гораздо реже.

Преимущества и недостатки сетей «кольцо»

Преимущества

Недостатки

● поскольку у кабелей в этой сети нет свободных концов, терминаторы здесь не нужны;

● каждый из компьютеров выступает в роли повторителя, усиливая сигнал, что позволяет строить сети большой протяженности;

● из-за отсутствия столкновений топология обладает высокой устойчивостью к перегрузкам, обеспечивая эффективную работу с большими потоками передаваемой по сети информации

● сигнал в «кольце» должен пройти последовательно (и только в одном направлении) через все компьютеры, каждый из которых проверяет, не ему ли адресована информация, поэтому время передачи может быть достаточно большим;

● подключение к сети нового компьютера зачастую требует ее остановки, что нарушает работу всех других компьютеров;

● выход из строя хотя бы одного из компьютеров или устройств может нарушить работу всей сети;

● обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной;

● чтобы избежать остановки работы сети при отказе компьютеров или обрыве кабеля, обычно прокладывают два кольца, что существенно удорожает сеть

Активная топология «звезда» (Active Star). Эта топология возникла на заре вычислительной техники, когда к мощному центральному компьютеру подключались все остальные абоненты сети. В такой конфигурации все потоки данных шли исключительно через центральный компьютер; он же полностью отвечал за управление информационным обменом между всеми участниками сети. Конфликты при такой организации взаимодействия в сети были невозможны, однако нагрузка на центральный компьютер была столь велика, что ничем другим, кроме обслуживания сети, этот компьютер, как правило, не занимался. Выход его из строя приводил к отказу всей сети, тогда как отказ периферийного компьютера или обрыв связи с ним на работе остальной сети не сказывался. Сейчас такие сети встречаются довольно редко.

Гораздо более распространенной сегодня топологией является похожий вариант — «звезда-шина» (Star Bus), или «пассивная звезда» (рис. 3.3). Здесь периферийные компьютеры подключаются не к центральному компьютеру, а к пассивному концентратору, или хабу (hub). Последний, в отличие от центрального компьютера, никак не отвечает за управление обменом данными, а выполняет те же функции, что и повторитель, то есть восстанавливает приходящие сигналы и пересылает их всем остальным подключенным к нему компьютерам и устройствам. Именно поэтому данная топология, хотя физически и выглядит как «звезда», логически является топологией «шина» (что и отражено в ее названии).

Рис. 3.3. Сеть с топологией «звезда-шина»

Несмотря на больший расход кабеля, характерный для сетей типа «звезда», эта топология имеет существенные преимущества перед остальными, что и обусловило ее широчайшее применение в современных сетях.

Преимущества сетей типа «звезда-шина»

● Надежность — подключение к центральному концентратору и отключение компьютеров от него никак не отражается на работе остальной сети; обрывы кабеля влияют только на единичные компьютеры; терминаторы не требуются.

● Легкость при обслуживании и устранении проблем — все компьютеры и сетевые устройства подключаются к центральному соединительному устройству, что существенно упрощает диагностику, обслуживание и ремонт сети.

● Защищенность — концентрация точек подключения в одном месте позволяет легко ограничить доступ к жизненно важным объектам сети.

Отметим, что при использовании вместо концентраторов более «интеллектуальных» сетевых устройств (мостов, коммутаторов и маршрутизаторов — подробнее о них будет рассказано позже) получается «промежуточный» тип топологии между активной и пассивной звездой. В этом случае устройство связи не только ретранслирует поступающие сигналы, но и производит управление их обменом.

3.2 Другие возможные сетевые топологии

Реальные компьютерные сети постоянно расширяются и модернизируются. Поэтому почти всегда такая сеть является гибридной, т. е. ее топология представляет собой комбинацию нескольких базовых топологий. Легко представить себе гибридные топологии, являющиеся комбинацией «звезды» и «шины», либо «кольца» и «звезды».

Однако особо следует выделить топологию «дерево» (tree), которую можно рассматривать как объединение нескольких «звезд» (рис. 3.4). Именно эта топология сегодня является наиболее популярной при построении локальных сетей.

Рис. 3.4. Сеть с топологией «дерево»

Наконец, следует упомянуть о сетчатой, или сеточной (mesh) топологии, в которой все либо многие компьютеры и другие устройства соединены друг с другом напрямую (рис. 3.5). Такая топология исключительно надежна — при обрыве любого канала передача данных не прекращается, поскольку возможно несколько маршрутов доставки информации. Сеточные топологии (чаще всего не полные, а частичные) используются там, где требуется обеспечить максимальную отказоустойчивость сети, например, при объединении нескольких участков сети крупного предприятия или при подключении к Интернету, хотя за это, конечно, приходится платить: существенно увеличивается расход кабеля, усложняется сетевое оборудование и его настройка.

Рис. 3.5. Сеть с сетчатой топологией

Одним из отличий метода коммутации пакетов от метода коммутации каналов является неопределенность пропускной способности соединения между двумя абонентами. В методе коммутации каналов после образования составного канала пропускная способность сети при передаче данных между конечными узлами известна - это пропускная способность канала. процесс передачи для определенной пары абонентов в сети с коммутацией пакетов является более медленным, чем в сети с коммутацией каналов.
Основы безопасности при работе в сетях