Содержание и задачи курса сопротивление материалов Испытание на сжатие образцов на ударную вязкость Расчет на прочность и жесткость Объёмные деформации Условие прочности при изгибе Иследование напряжений при изгибе

Задачи курса сопротивление материалов

В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать при­емлемые по точности результаты расчетов. При этом главной задачей курса является формирование зна­ний для применения математического аппарата при решении при­кладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. То есть данный предмет является базовым для формирования ин­женерного мышления и подготовки кадров высшей квалификации по техническим специализациям.

Условие прочности при изгибе

Максимальное нормальное напряжение в балке возникает в сечении, где изгибающий момент достигает наибольшей по модулю величины, то есть в опасном сечении

.

Условие прочности при изгибе формулируется следующим образом: Балка будет прочной, если максимальные нормальные напряжения не превысят допускаемых напряжений

.

Величина допускаемых напряжений назначается в зависимости от материала, из которого изготовлена балка.

Пластичные материалы обладают примерно равными пределами текучести на сжатие  и на растяжение   равны между собой и поэтому .

Для хрупких материалов, у которых прочность при сжатии выше, чем при растяжении, допускаемые напряжения на растяжение и сжатие, как правило, не равны между собой   и, поэтому, необходимо записывать два условия прочности

,

где   и  - расстояния от нейтральной оси до наиболее удаленных растянутого и сжатого волокон.

Напряжения при поперечном изгибе

Нормальные напряжения, возникающие при поперечном изгибе, с достаточной для практических целей точностью могут определяться по формулам чистого изгиба. Поэтому условия прочности по нормальным напряжениям имеют тот же вид, что и для чистого изгиба.

Касательные напряжения в поперечных сечениях балки появляются при нагружении балки сосредоточенными и распределенными силами. Величина их определяется формулой Журавского:

,

где   - поперечная сила,

   - статический момент отсеченной части сечения относительно нейтральной оси,

  b - ширина сечения,

  - осевой момент инерции.

 Эпюра касательных напряжений показана на рис.6.6.

Условие прочности по касательным напряжениям будет иметь вид:

где  - наибольшая по модулю поперечная сила,

 - статический момент инерции верхней половины сечения.

Полная проверка прочности балки

  При поперечном изгибе в произвольной точке балки (рис.6.6 т.В) одновременно действуют как нормальные напряжения, так и касательные. Материал балки находится при плоском напряженном состоянии, поэтому для оценки прочности следует воспользоваться теориями прочности, например, третьей . Если подставить выражения для главных напряжений (3.4), то получим

.

 Эпюра эквивалентных напряжений, построенная для прямоугольного сечения, показана на рис.6.6.

 Для обеспечения прочности балки при совместном действии как нормальных, так и касательных напряжений должно выполняться условие

.

Рациональные формы сечений балок

 Рациональным можно считать сечение балки, которое при равной с другими сечениями площади имеет наименьшие напряжения.

 Максимальные напряжения, возникающие в балке при действии заданной нагрузки, тем меньше чем больше осевой момент сопротивления сечения изгибу. Поэтому, сечения с большим Wx ,будут более рациональными. Так например, прямоугольное сечение, показанное на рис.6.7а предпочтительнее использовать при изгибе под действием вертикальной нагрузки так как осевой момент сопротивления сечения изгибу для него будет больше чем для этого же сечения, но повернутого на 90о (рис.6.7б).

 Анализируя эпюры напряжений, можно отметить, что на продольной линии нормальные напряжения равны нулю, касательные напряжения достигают максимума, в крайних волокнах, наиболее удаленных от продольной линии, наоборот нормальные напряжения достигают наибольших по модулю значений, а касательные напряжения равны нулю. Расчетная практика показала, что нормальные напряжения, как правило, в несколько раз больше касательных. Поэтому имеет смысл проектировать сечения так, что в зоне действия больших напряжений находилось бы большая часть материала. Этому требованию отвечают сечения в виде двутавровых и швеллеровых прокатных профилей, а также различные коробчатые и кольцевые сечения.

Правила проверки эпюр

Перемещения при плоском изгибе При изгибе рассматриваются перемещений: прогиб и угол поворота поперечного сечения. Прогибом балки δ называется величина, на которую перемещается центр тяжести поперечного сечения в направлении, перпендикулярном первоначальной оси балки. Углом поворота поперечного сечения q называется угол, на который поворачивается поперечное сечение при деформации балки

Определение характеристик упругости изотропных материалов Методические указания к выполнению лабораторной работы № 2-3 по курсу “Сопротивление материалов”

Определение модуля сдвига для изотропных материалов Экспериментальное определение характеристик упругости алюминиевого сплава при кручении: модуля сдвига G. Ознакомление с методикой измерения угловых деформаций путем замера линейных перемещений индикаторами часового типа.

С понятием однородности тесно связано понятие сплошнос­ти среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит в теле конструкции нет пустот . Под действием внешних сил реальное тело меняет свои геомет­рические размеры. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью. При решении большинства задач в сопротивлении материалов принимается, что материал конструк­ций абсолютно упругий.
Древние тибетские легенды